
FABRIC Network Service Model
Paul Ruth, Ilya Baldin, Komal Thareja

RENCI - UNC Chapel Hill
Chapel Hill, NC, USA

{pruth,ibaldin,kthare10}@renci.org

Tom Lehman
Virnao

tlehman@virnao.com

Xi Yang, Ezra Kissel
Energy Sciences Network

Berkeley, CA, USA
{xiyang,kissel}@es.net

Abstract—The FABRIC research infrastructure enables
cutting-edge experimental networking research at-scale. Cen-
tral to the FABRIC philosophy is providing researchers access
to everywhere-programmable infrastructure including compute,
storage, and networking connected with dedicated optical links
deployed across more than 30 geographically distributed sites.

At a high-level, each FABRIC site can be understood as a small
cloud providing access to advanced computational hardware.
One challenge to developing a novel faculty, such as FABRIC,
is modeling the set of advanced networking services that are
available to the user. The network services required by FABRIC
users have several factors that contribute to this challenge
including the need to experiment with layer 2 and layer 3
protocols spanning wide- and local-area networks, as well as
dedicated connections to external ‘edge’ facilities such as other
testbeds (Chameleon Cloud, CloudLab, and the PAWR testbeds),
supercomputing centers, campus infrastructure, and other large
instruments.

This paper presents the FABRIC network services that enable
users to experiment with complex network topologies. The work
presented includes both the design and implementation of the
control framework that instantiates network services on behalf
of the user, as well as the efforts toward the FABlib library
and JupyterHub environment that abstract the network services,
simplifying the design and deployment of advanced networking
topologies on FABRIC.

Index Terms—Computer networks, Wide area networks, Cloud
computing, Application programming interfaces

I. INTRODUCTION

FABRIC [1] provides users with the ability to deploy
networking experiments at-scale targeting cybersecurity, dis-
tributed computing and storage systems, machine learning, and
science applications. Each experiment is composed of one or
more slices [4] containing resources acquired from FABRIC’s
geographically distributed infrastructure. Many of FABRIC’s
resources are similar to those available in traditional public
and private clouds with the addition of deeply programmable
networking hardware (P4, OpenFlow, Smart NICs, etc.). The
major contribution of FABRIC is that its resources are located
in the core of the wide-area network and can be connected
using user-specified networking services with many possible
configurations not available to researchesrs using the existing
Internet.

FABRIC is supported in part by a Mid-Scale RI-1 NSF award under Grant
No. 1935966.

One of the main FABRIC innovations is the design of
the network service model that defines multiple types of on-
demand network services that are available to experimenters.
These services can be best effort or QoS-assured on-demand
Layer 2 channels between desired interfaces in the topology,
they can attach desired interfaces of the topology to shared
IPv4 or IPv6 dataplanes that are shared among multiple
experiments and are private to FABRIC, they can create on-
demand peering with the public Internet, and can create on-
demand port mirroring arrangements to enable the collection
of measurements from inside the slice or about other slices.
FABRIC also allows on-demand connections from slices to
external partner facilities, referred as Facility Ports. Multiple
services and service instances can be combined in a single
slice, as desired by the experimenter, mixing L2 and L3
services to achieve desired results. This rich set of capabilities
allows FABRIC experimenters to create unique experiment
topologies that combine FABRIC resources, resources of FAB-
RIC facility partners, testbeds, scientific instruments and other
resources reachable via on-demand Layer 2 networks or via
public Internet. Due in large part to these capabilities, we refer
to FABRIC as the ’testbed-of-testbeds’.

II. NETWORK SERVICES

FABRIC has multiple options for Layer 2 Network Services.
A single slice may include one or more FABRIC provided
Layer 2 services between its VM slivers. Experiments cannot
bridge together two or more Layer 2 services. That is, FABRIC
Layer 2 services remain isolated from one another. When
needed, interconnects between FABRIC Layer 2 Services can
be accomplished using routing.

All FABRIC network services are implemented using Cisco
NSO (Network Service Orchestrator) and exposed to the user
via FABRIC Control Framework, which presents FABRIC
Information Model Abstractions (FIM) to higher layers, like
FABlib. The implementation relies on Cisco IOS MPLS-SR
(Multi-Protocol Label Switching-Segment Routing) protocol
stack. Unlike more traditional VLAN-based network service
implementations, this means that very little state is maintained
in the network to support each service, substantially cutting
down on service setup time. Services do present a VLAN-
like service to the end user, however this is only done on the
last hop between the FABRIC Cisco router and the interface
of a network card at one of the sites. VLAN translation is
performed automatically by MPLS SR, thus freeing the user orISBN 978-3-903176-48-5© 2022 IFIP



Fig. 1. FABRIC L2 Point-to-Point (L2PTP) network service connecting two
L2 Bridge network: A pair of nodes are directly connected using a L2PTP
connection and act as routers for local L2 Bridge network services on each
site.

the FABRIC Control Framework from the need to coordinate
last hop VLAN assignments, simplifying the implementation.

In the following sections we describe the available FABRIC
network services, starting from the simpler on-demand L2
services - Layer 2 Point-to-Point (L2PTP) and Layer 2 Site-to-
Site (L2STS), Layer 2 Bridge (L2Bridge) followed by Layer
3 IPv4 and IPv6 services (FABNetv4, FABNetv6), Layer 3
VPN, on-demand peering, Port Mirroring and Facility Ports.

A. Layer 2 Services

The Layer 2 Point-to-Point Connection Service (L2PTP) is
based on an industry standard “Virtual Private Wire Service
(VPWS)”. A service instance connects a service termination
point on one dataplane network element to a service ter-
mination point on another dataplane network element There
may be one or more intermediate or transit dataplane network
elements whose function is to switch MPLS labels. A “service
termination point” is defined by a port and an associated
VLAN Profile. A VLAN Profile typically is defined by a single
VLAN, but could also be a range of VLANs. This service is a
completely transparent ethernet frame transport service. There
is no MAC learning, MAC forwarding, or ethernet protocol
processing. L2PTP can have associated QoS parameters (burst
size and bitrate) as well as an ERO (Explicit Route Object) that
allows experimenter to dictate the path through the network
this service must take.

Figure 1 shows an example of how a slice may use the Layer
2 Point-to-Point Connection Service. In the figure, VM1 and
VM2 are directly connected with a layer 2 circuit that spans
a pair of geographically distributed sites. As depicted in the
figure, L2PTP links are commonly used to connect a pair of
nodes (i.e. VMs or dedicated networking hardware) that are
responsible for processing and forwarding traffic on behalf of
several other nodes hosted at that site.

Layer 2 Bridge (L2Bridge) service always serves a single
site, unlike L2PTP. This service is a local layer 2 broadcast
domain configured on a single network dataplane element.
Unlike other services, the technology utilized to create this
is based on VLANs. A single broadcast domain (a ‘bridge’)
is created within a single network element connecting the
desired interfaces together. Because the service is local to a
single network element, dedicated network interfaces of VM
slivers do not experience contention with other slices and can
utilize the full line rate (25Gbps or 100Gbps, depending on

Fig. 2. FABRIC L2 Site-to-Site (L2STS) network service: Several nodes from
two different FABRIC sites are connected with a L2STS network service. All
nodes can communicate directly over the single L2 broadcast network.

the interface type). In Figure 1, each site has an L2Bridge that
is used to connect a set of local VMs. One VM is also connect
to an L2PTP link and has the responsibility to forward traffic
on behalf of the other VMs.

The Layer 2 Site-to-Site Connection Service (L2STS) is
based on an industry standard ”Ethernet Virtual Private Net-
work (EVPN)” technology. A service instance connects mul-
tiple service termination points on one dataplane network
element to multiple service termination points on another
dataplane network element. There may be one or more inter-
mediate or transit dataplane network elements whose function
is to switch MPLS labels. This service is not a transparent
Ethernet frame transport service. This services includes MAC
learning and MAC forwarding which is distributed using the
network internal BGP messages. Unlike L2PTP, L2STS does
not allow quality of service parameters or ERO to be specified.
Figure 2 show an L2STS network service. All VMs are directly
connected the to L2STS service and can communicate directly
with all other nodes.

B. Layer 3 Services (FABNetv4 and FABNetv6)

The FABRIC Layer 3 Services provide a preconfigured
routed service between desired interfaces of a slice topology.
Two service types are offered - one based on IPv4 addresses
from RFC1918 [5] private address space (FABNetv4), the
other is based on IPv6 service based on FABRIC’s own
allocation of publicly routable IPv6 addresses (FABNetv6).
Importantly there is just a single instance of each service
present in FABRIC and sliver interfaces simply attach and de-
tach from these instances based on experimenter requirements.
At each site each slice is allocated a block of addresses (IPv4
or IPv6) by the Control Framework, that is used for interfaces
belonging to this slice at that site. Routing between them
is automatically accomplished by the FABRIC routing stack.
Dynamic ACLs (Access Control Lists) can be introduced to
prevent slices from communicating with one another. Both
FABNetv4 and FABNetv6 services are best effort.

Figure 3 shows the FABNet service. Users are provided
with an L2 network for each site that includes an IP subnet
allocation and a FABNet router IP. The FABNet service is
responsible for forwarding L2 traffic on behalf of the user.

C. Layer 3 Virtual Private Network (VPN) Service (L3VPN)

The Layer 3 Virtual Private Network (VPN) service shown
in Figure 4 is based on an industry standard “Virtual Private



Fig. 3. FABRIC Layer 3 Routed Services (FABNetv4 and FABNetv6).
Separate FABNet networks are created at each of three sites. The local
FABNet networks are assigned a subnet and gateway. Nodes on each site
are configured to use the assigned FABNet gateway to route traffic to any
other FABNet network.

Network (VPN)” technology. This VPN is provisioned over
a standard IP routed service. The purpose of the service is
to attach external entities to a slice using publicly routable
network. This could include experimenter’s laptop, a facility
on campus or a scientific instrument.

A service instance connects one or more service termination
points on a dataplane network element to a Layer 3 VPN.
The slice must run a BGP Speaker, with private ASN, at
each of the one or more service termination points and peer
with the FABRIC Network L3VPN BGP Speaker. The L3VPN
will only route slice private IPv4 or IPv6 address space. This
address space must be provided by the slice owner. The service
will provide routing services based on Slice specific private
address space, between distributed slice resources (slivers)
across the FABRIC Infrastructure. Generally this service is
expected to be best-effort.

D. Port Mirror

Port Mirroring service allows experimenter to request that
all traffic from a specific port/interface on the dataplane switch
in a given FABRIC site is mirrored onto another port that
belongs to the experimenter slice. This allows experimenters
to collect traffic from their own or even other experimenters’
slices. This service requires special authorization to be instan-
tiated to protect the privacy of individual experiments and only
a small number of experimenters are expected to be allowed
to use it.

E. Facility Port

Facility Port service is a special instance of an L2PTP ser-
vice that connects a designated interface in the experimenter’s
slice to a pre-defined interface outside the FABRIC footprint.
These facility ports are predefined and pre-configured within
FABRIC Information Model aggregate advertisements and the
experimenters can choose which of these ports they want to
connect to their topology. Special authorization is required to
instantiate a Facility Port service to protect the security of the
facilities.

Fig. 4. FABRIC Layer 3 VPN network service connecting L2 Bridges at three
sites. L3VPN network services can be used for wide area connections. Unlike
L2PTP and FABNet network services, L3VPN requires the use of BGP.

In order to enable a Facility Port, FABRIC negotiates with
facility’s networking team to create a predefined Layer 2
peering point - an interface on their switch, which is connected
to an interface on FABRIC dataplane switch at some site. Since
this service is similar to L2PTP, an experimenter may choose
to connect an interface of a VM in any site in FABRIC to
this facility port, not just the site immediately adjacent the
facility in FABRIC topology. These services can have quality-
of-service parameters associated with them.

III. FABLIB

The FABRIC network service model provides a powerful
set of abstractions that enable wide array of Internet-scale
networking experiments. Executing a networking experiment
in a complex network topology is challenging. The FABlib
library simplifies the development and deployment of complex
networking experiments using the FABRIC network service
model.

FABlib is a Python library included as part of the
fabrictestbed-extensions PyPi package. FABlib is
designed to simplify the use of the FABRIC API and it’s
network service model. Python applications can query and use
FABRIC services through FABlib. These capabilities include
creating, deleting, and modify slices supporting experiments,
as well as querying for available FABRIC resources. The re-
mainder of this section describes the primary FABlib abstrac-
tions for the initial FABRIC network services and provides
examples of their use.

A. Slices

The slice is the primary abstraction used to describe an
experiment topology on FABRIC. A slice is a collection of
logically-related resources representing a single execution of
an experiment or a portion of an experiment. The first step
in deploying an experiment using FABlib is to create a slice
to contain any resources needed for the experiment. Initially,
a newly created slice is empty and not instantiated. The
user must add nodes, components, and network services as
described in Sections III-A0a and III-B. After the user has



1 #Create Slice
2 my_slice = fablib.new_slice(name='MySlice')
3 # Node1
4 node1 = my_slice.add_node(name='Node1', site='STAR', image='default_ubuntu_20',
5 cores=2, ram=8, disk=100)
6 [iface1] = node1.add_component(model='NIC_Basic', name='nic1').get_interfaces()
7 # Node2
8 node2 = my_slice.add_node(name='Node2', site='STAR', image='default_ubuntu_20',
9 cores=2, ram=8, disk=100)

10 [iface2a, iface2b] = node2.add_component(model='NIC_ConnectX_6', name='nic1').get_interfaces()
11 # Network(s)
12 net1=my_slice.add_l2network(name='net1', interfaces=[iface1, iface2a])
13 #Submit the request
14 my_slice.submit()

Listing 1: Add an L2 Bridge to a slice. The network requires a list of interfaces associated with previously created components.
The type of network service created is determined by the locations of the interfaces in the list.

added all required resources to the new slice, the slice is
instantiated by submitting the slice request to the FABRIC
orchestrator which manages the deployment of the slice on
behalf of the user.

Listing 1 shows how to deploy a simple FABRIC experi-
ment. Line 4 shows how to create the slice and Line 14 shows
submitting the slice to be instantiated.

After a slice is created, the application can add compute
resources that include networking, compute, storage, and other
specialized accelerator components. At the time this writing,
virtual machines are the only compute nodes that are available.
Bare metal nodes will, eventually, be available although space
and power constraints will limit their availability.

a) Adding Nodes: Adding a new virtual machine to a
slice is performed using the add node method in Listing 1.
A user is free to choose the name of the node, the virtual
machine image, the FABRIC site, as well as the amount of
basic resources capacities. Line 4 shows how the user can
specify name, FABRIC site, and capacities (compute cores,
memory,and local disk space) of each virtual machine.

The only required argument is the name. Unspecified
capacities will be set to the minimum possible value (currently
cores=2, ram=8, and disk=10). If the site is not specified,
a random site will be chosen.

b) Adding Components: One of the primary features of
FABRIC is enabling experimentation using modern computer
hardware in the core the wide-area internets. Many of the
advanced hardware components available in FABRIC are PCI
devices that are directly attached to virtual machines using
PCI passthrough. These devices include high-bandwidth SR-
IOV NICs (up to 100 Gbps), Smart NICs, FPGAs, GPUs, and
NVMe storage devices. Experiments are given full control of
any PCI devices that are added to a slice as components of
a virtual machine. The devices are accessible via the Linux
PCI subsystem and the user can install any device driver and
driver configuration required by the experiment.

Components are added to the a node using the
add component method in Listing 1 line 10. The example
shows a Mellanox ConnectX-6 NIC with dual 100 Gbps
ports. FABlib components that include network ports, such

as the Mellanox ConnectX-6, have a list of interfaces, one for
each port. A component’s interfaces can be connected with
appropriate network services to meet the requirements of the
experiment. The example in Listing 1 shows how to access the
first interface on each of two nodes, one with a NIC_Basic
component and the other with a NIC_ConnectX_6. How-
ever, the NIC_ConnectX_6 component has an additional
unused interface that could be connected to an addition net-
work, if needed.

Currently, other components include Mellanox ConnectX-5
NICs with dual 25 Gbps ports, Tesla T4 GPUs, RTX-6000
GPUs, and 1 GB NVMe drives. Additional component types
will be added as FABRIC continues to be deployed. The
planned Xilinx FPGA components will include network in-
terfaces and will enable FPGA based networking experiments
including hardware P4 support.

B. Network Services

Dedicated at-scale networks topologies are critical to ex-
perimenting with novel internet architectures. The network
services described in this paper are used to connect the nodes
and components that are part of the experiments designed
by FABRIC users. FABlib provides a simple abstraction for
incorporating these network services in a user’s experiment.

FABRIC experiments are able to target network stack layers
as low as layer 2. The FABlib abstraction supports deploying
layer 2 and layer 3 network services.

1) L2 Network Services: FABRIC’s L2 network services
provide Ethernet connectivity between networking compo-
nents of nodes in a slice. Although, there are several un-
derlying FABRIC L2 network services (L2PTP, L2STS, and
L2Bridge), from the experimenter’s perspective, the differ-
ences between these services are the locations of the connected
components and the, possible, attributes of the service, such
as QoS bandwidth guarantees. The FABlib library attempts to
streamline the complexity of the lower-level network service
from the user by automatically choosing the appropriate ser-
vice based on the location of the connected components and
any optional service configuration. All FABlib L2 networks
are created using the method call in Listing 1 line 12. The



1 #Create Slice
2 my_slice = fablib.new_slice(name='MySlice')
3 #Node1
4 node1 = my_slice.add_node(name='Node1', site='STAR', image='default_ubuntu_20',
5 cores=2, ram=8, disk=100)
6 [iface1] = node1.add_component(model='NIC_Basic', name='nic1').get_interfaces()
7 #Node2
8 node2 = my_slice.add_node(name='Node2', site='UTAH', image='default_ubuntu_20',
9 cores=2, ram=8, disk=100)

10 [iface2a, iface2b] = node2.add_component(model='NIC_ConnectX_6', name='nic1').get_interfaces()
11 #Network(s)
12 net1=my_slice.add_l2network(name='net1', interfaces=[iface1, iface2a])
13 #Submit the request
14 my_slice.submit()

Listing 2: Add an L2 STS/PTP to a slice. The network requires a list of interfaces associated with previously created components.
The type of network service created is determined by the locations of the interfaces in the list.

type of network service created is determined by the locations
of the interfaces in the list.

a) Local Ethernet (L2Bridge): The FABRIC L2 Bridge
service is used when an experiment requires a local
unmanaged Ethernet network switch. Listing 1 line 12
show the creation of a L2 Bridge service using the
slice.add_l2network() method. This method will cre-
ate a L2 Bridge network service when all interfaces included
in the network are exclusively from a single FABRIC site.
There is no limit on the number of interfaces that can be added
to an L2 Bridge network service. The QoS of an L2 Bridge
is limited by the components connected to the network. All
dedicated PCI devices have their full bandwidth available (i.e.
ConnectX-6 ports are 100 Gbps and ConnectX-5 ports are 25
Gbps). Basic NICs are implemented using 100 Gbps SR-IOV
VFs but share bandwidth with the othe Basic NICs mapped
to that physical port.

b) Wide-Area Links (L2PTP/L2STS): Wide-area layer 2
networking links are generally point-to-point links connect-
ing a pair of geographically distributed switches or routers.
FABRIC network services enable users to create wide-area
point-to-point (L2PTP) links between a pair of component
interfaces in their experiment topologies or wide-area site-to-
site (L2STS) Ethernet networks. FABRIC site-to-site network
services extend the capabilities of point-to-point links to allow
any number of component interfaces participate the a single
wide-area unmanaged Ethernet switch that, logically, spans
two FABRIC sites. Although Site-to-site networks provide an
easy way to connect many nodes across a pair of FABRIC
sites, there are several practical limitations that prevent site-to-
site networks from being used in many experiment topologies.
Most notably, Site-to-site networks cannot have QoS guaran-
tees and have connectivity restrictions when connecting Basic
NICs (SR-IOV VFs) that are placed on a common host.

The FABlib library simplifies the deployment of L2P2P
and L2STS network services by automatically choosing the
appropriate wide-area L2 network service depending on the list
of interfaces that are added to the network. L2PTP networks
are created when there are be exactly two interfaces in the
list and the interfaces are dedicated network devices (i.e. SR-

IOV devices called NIC_Basic cannot be attached to an
L2PTP network service). L2STS network services are created
when the list includes more than two interfaces or any SR-
IOV interfaces. An exception is raised if the list includes
interfaces from more the two sites. Listing 2 shows how to
use FABlib to create L2P2P and L2STS network services. The
only difference between creating L2Bridge networks and wide-
area networks is the location of the nodes that are added to
the network.

2) L3 Networks (FABNetv4/FABNetv6): FABRIC provides
a pair of layer 3 IP networking services across every FABRIC
site (FABnetv4 and FABnetv6). These services enable a user’s
experiment to join FABRIC’s private internet that connects
all experiments across the testbed using FABRIC’s high-
performance network links.

The FABlib library provides functionality that enables a
user’s experiment to join FABnetv4 or FABnetv6. Listing 3
shows how to use FABlib to join FABnetv4. The user must
create a local L3 network service at each site where the
experiment requires L3 connectivity. All component interfaces
added to an L3 network must be from the same site. The
L3 network at each site will connect the interfaces with an
isolated L2 network and will issue a subnet and gateway that
is routable on the FABnet internet. Lines 11 and 12 show
how to create the network and add interfaces. Lines 21-33
show how to configure the nodes with the assigned subnet
and gateway. Routes must be added to the nodes to select
which traffic to send across the FABNet network. Care must
be taken to only add the desired routes to the FABnet gateway.
Setting the default gateway to the FABnet network will cut off
managment access to the node.

FABNetv6 will connect a user’s experiment using IPv6
addressess from FABRIC’s autonomous system. The FAB-
netv6 internet will be peered with the public IPv6 Internet.
FABnetv4 uses RFC1918 addresses that will not peer with the
public Internet. However, there are plans to extend FABnetv4
to include NAT access to the public internet and, possibly,
allow a limited number of publicly routable addresses on some
FABIRC sites.



1 my_slice = fablib.new_slice(name='MySlice')
2

3 node1 = my_slice.add_node(name='Node1', site='STAR', image='default_ubuntu_20',
4 cores=2, ram=8, disk=100)
5 iface1 = node1.add_component(model='NIC_Basic', name='nic1').get_interfaces()[0]
6

7 node2 = my_slice.add_node(name='Node2', site='UTAH', image='default_ubuntu_20',
8 cores=2, ram=8, disk=100)
9 iface2 = node2.add_component(model='NIC_Basic', name='nic1').get_interfaces()[0]

10

11 net1=my_slice.add_l3network(name='net1', interfaces=[iface1], type='IPv4')
12 net2=my_slice.add_l3network(name='net2', interfaces=[iface2], type='IPv4')
13

14 my_slice.submit().
15

16 # Wait for slice to become ready ...
17

18 net1 = my_slice.get_network(name='net1')
19 net2 = my_slice.get_network(name='net2')
20

21 net1_available_ips = net1.get_available_ips()
22 net2_available_ips = net2.get_available_ips()
23

24 node1 = my_slice.get_node(name='Node1')
25 iface1 = node1.get_interface(network_name='net1')
26 iface1.ip_addr_add(addr=net1.get_available_ips().pop(0), subnet=net1.get_subnet())
27

28 node2 = my_slice.get_node(name='Node2')
29 iface2 = node2.get_interface(network_name='net2')
30 iface2.ip_addr_add(addr=net2.get_available_ips().pop(0), subnet=net2.get_subnet())
31

32 node1.ip_route_add(subnet=net2.get_subnet(), gateway=net1.get_gateway())
33 node2.ip_route_add(subnet=net1.get_subnet(), gateway=net2.get_gateway())

Listing 3: Add an L3 network to a slice. The network requires a list of interfaces associated with previously created components
and the type of L3 network.

C. Examples

Jupyter [3] notebooks have become a powerful and prolific
way to learn about and interact with many online tools
including cloud services. The FABlib library was designed
to work well within Jupyter notebooks. Together, FABlib and
Jupyter notebooks are the recommended way to use FABRIC.
FABRIC provides a JupyterHub service that creates a private
Jupyter environment for each user to develop and deploy
experiments. Each user’s Jupyter environment is seeded with
a set of example notebooks. These notebooks are the best way
to get started with FABRIC and to share advanced FABRIC
techniques.

The examples in this paper are included in FABRIC’s
default Jupyter environment. In addition, the portability of
Jupyter notebooks allowed FABRIC to be used in other Jupyter
environments. The FABRIC examples are available in the
Chameleon Cloud [2] Jupyter environment and can be loaded
by invoking a Chameleon artifact [6].

IV. CONCLUSION

The FABRIC network service model is a powerful way
for uses to design an deploy experiment with typologies
using complex network services. FABRIC users can access the
network services using the FABlib library on many available
Jupyter environments.

REFERENCES

[1] Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S. Monga,
Kuang-Ching Wang, Tom Lehman, and Paul Ruth. Fabric: A national-
scale programmable experimental network infrastructure. IEEE Internet
Computing, 23(6):38–47, 2019.

[2] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody
Hammock, et al. Lessons Learned from the Chameleon Testbed. In 2020
{USENIX} Annual Technical Conference ({USENIX}{ATC} 20), pages
219–233, 2020.

[3] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia
Abdalla, and Carol Willing. Jupyter notebooks – a publishing format for
reproducible computational workflows. In F. Loizides and B. Schmidt,
editors, Positioning and Power in Academic Publishing: Players, Agents
and Agendas, pages 87 – 90. IOS Press, 2016.

[4] Rick McGeer, Mark Berman, Chip Elliott, and Robert Ricci. The GENI
Book. Springer, 2016.

[5] Robert Moskowitz, Daniel Karrenberg, Yakov Rekhter, Eliot Lear, and
Geert Jan de Groot. Address Allocation for Private Internets. RFC 1918,
February 1996.

[6] Paul Ruth. Fabric testbed: Jupyterhub experiment examples,
https://doi.org/10.5281/zenodo.6434975, April 2022.


	Introduction
	Network Services
	Layer 2 Services
	Layer 3 Services (FABNetv4 and FABNetv6) 
	Layer 3 Virtual Private Network (VPN) Service (L3VPN)
	Port Mirror
	Facility Port

	FABlib
	Slices
	Network Services
	L2 Network Services
	L3 Networks (FABNetv4/FABNetv6)

	Examples

	Conclusion
	References

